
So all I have to do is successfully pipette certain amounts like 10mL, 1mL, or 0.1mL. Then dilute the solution to 1 or 2L in a class A volumetric flask. It's not that hard if you got good lab technique, but you do have 27 chances to accidently add the wrong amount. Anyways, silver is always a little tricky to get into a solution. It always wants to precipitate out. I think it forms AgCl. The Cl anions come from the HCl I add to the solution along with the HNO3 to stabilize the metals. One way to prevent precipitation is to add the HCl last after the silver has already been added and is diluted throughout everything else. But in general, silver can't be put in a multi-element solution above 500ppb. Well for some reason I forgot everything I knew for 30 seconds and messed up the entire solution on the 27th metal, silver. As soon as I pipetted 0.5mL of a 1000ppm silver solution into about 1L of other dissolved metals + acid + water it crashed out into a white haze in the flask and eventually combined into what looks like normal table salt at the bottom of the volumetric flask, but I wouldn't put that salt on my fries.


1 comment:
Not only have I found a new site to bookmark for some fun reading, I have likely figured out why my silver standards gave a wonky calibration curve. I really should have known better--after all, I could probably pick out AgCl's Ksp constant in a multiple choice list. I'll chalk it up to my first go-around with ICP/MS. Anyway, love the blog and keep on rockin' in a free world.
Post a Comment